$$
\text { E80 Spring } 2014
$$

-Basic Electrical Measurements -Intro to OpAmp Characteristics

E80 Lecture 4.1: Basic Electrical Measurements

Example: first order system RC circuit

- How to present measurement results? (E59)
- What instruments to use?
- How to set up test?
- Any limit?

Example: first order system RC circuit

Power supplies

Function generators
Breadboard
Multimeters Oscilloscope
DAQ

How to present measurement results? Time-Domain Plots

E80 Lecture 4.4: Basic Electrical Measurements

How to present measurement results? Frequency-Domain (Bode) Plots

E80 Lecture 4.5: Basic Electrical Measurements

Instrumentation

- Instruments that GENERATE signals
- Signal generator (AC or DC)
- Power supply (DC)
- Instruments that MEASURE signals
- Multimeter (AC/DC voltage/current, resistance)
- Oscilloscope (AC)
- DAQ
- Wires and cables that CONNECT the instruments
- BREADBOARD

Function Generator

- Waveforms: Sine, square, triangle, sawtooth
- AC signal
- Parameters: Amplitude (Vpp), Frequency (Hz), Out Term (High-Z or 50Ω)

E80 Lecture 4.7: Basic Electrical Measurements

Power Supply

- DC
- $C O M=$ common reference node of circuit
- $\frac{1}{=}$ = chassis/earth ground

E80 Lecture 4.8: Basic Electrical Measurements

Multimeter- Voltage

Measuring V :

- Connect in parallel with C.U.T
- Internal resistance of VM should be large, $10 \mathrm{M} \Omega$ for Elenco
- DC vs. AC (RMS for sinusoid)
- Range

E80 Lecture 4.9: Basic Electrical Measurements

Multimeter- Current

Measuring I:

- Connect in series with the C.U.T.
- Internal resistance of AM must be very small, can be ignored.
- DC vs. AC (RMS for sinusoid)
- Range

[^0]
Multimeter -Resistance

Measuring R :

- Connect across R (isolated from other circuits)
- ΩM has internal battery, so should not connect to active circuits such as power supply

E80 Lecture 4.11: Basic Electrical Measurements

Multimeter -Digital vs. Analog

Simpson 260

HP34401A (in E80/VLSI lab)

- Analog meter (less precision in VM due to lower input resistance)
- Digits vs. needle position
- Higher performance: precision, true RMS reading

Oscilloscope:

Voltage Measurement (Time domain)

E80 Lecture 4.13: Basic Electrical Measurements

Oscilloscope Probe

E80 Lecture 4.14: Basic Electrical Measurements

Oscilloscope Probe

C.U.T

Oscilloscope: $1 \mathrm{M} \Omega$ input resistance, 20pF capacitance
Coax cable capacitance typically ~ 100pF 10x probe: $9 \mathrm{M} \Omega, 1 / 9^{*}(120 \mathrm{pF})$. Improved input impedance by a factor of 10 not only for low frequency but also for high frequency

- Oscilloscope bandwidth 60MHz

Tuning of 10x probe (instruction see BEM guide)
E80 Lecture 4.15: Basic Electrical Measurements

Use long busses for power and ground:
 Don't use them for signals

Color-code wires:
Red $=V+$ power
Black $=\mathrm{V}$ - power
Green = ground
White or Blue = signal
Keep components close to the board:
Trim resistors, capacitors, wires

Check individual component

 before constructing the whole circuit[^1]
Pay Attention to Details and Practice

http://makezine.com/2010/03/22/improving-breadboard-layout-through/
E80 Lecture 4.17: Basic Electrical Measurements

Data Organization

How many data points to take?
Useful data analysis tool?
DAQ and LabVIEW (automation)?
E80 Lecture 4.18: Basic Electrical Measurements

Introduction to Opamp

○
 Characteristics

- Simple analysis procedure
- Construct unity-gain amplifier or buffer

Introduction to Opamp

- Active components \rightarrow provide power gain, requires power supply V^{+}and V^{-}
- Dual polarity vs. single polarity power supply
- $\mathrm{V}_{\text {out }}=\mathrm{A}\left(\mathrm{V}_{+}-\mathrm{V}_{-}\right)$

Characteristics of Opamp

System response: $\mathrm{V}_{\text {out }}=\mathrm{A}\left(\mathrm{V}_{+}-\mathrm{V}_{-}\right)$

- Typical $A=10^{5} \rightarrow V_{+} \cong V_{-}$(since $V_{\text {out }}$ is some finite value <power supply) Typical Rin=few $\mathrm{M} \Omega \rightarrow$ current into opamp $=i_{-}=i_{+} \cong 0$

Unity Gain Amplifier

$v_{0}=? \quad$ What is the purpose of this buffer?

E80 Lecture 4.22: Basic Electrical Measurements

Non-inverting amplifier

$$
\frac{v_{0}}{v_{i}}=1+\frac{R_{f}}{R_{1}}
$$

E80 Lecture 4.23: Basic Electrical Measurements

[^0]: E80 Lecture 4.10: Basic Electrical Measurements

[^1]: E80 Lecture 4.16: Basic Electrical Measurements

