E80 Spring 2014

-Basic Electrical Measurements -Intro to OpAmp Characteristics

E80 Lecture 4.1: Basic Electrical Measurements

Example: first order system RC circuit

Example: first order system RC circuit

E80 Lecture 4.3: Basic Electrical Measurements

How to present measurement results? Time-Domain Plots

How to present measurement results? Frequency-Domain (Bode) Plots

E80 Lecture 4.5: Basic Electrical Measurements

Instrumentation

- Instruments that GENERATE signals
 - Signal generator (AC or DC)
 - Power supply (DC)
- Instruments that **MEASURE** signals
 - Multimeter (AC/DC voltage/current, resistance)
 - Oscilloscope (AC)
 - DAQ

Wires and cables that CONNECT the instruments

• BREADBOARD

E80 Lecture 4.6: Basic Electrical Measurements

Function Generator

- Waveforms: Sine, square, triangle, sawtooth
- AC signal
- Parameters: Amplitude (Vpp), Frequency (Hz), Out Term (High-Z or 50 $\Omega)$

E80 Lecture 4.7: Basic Electrical Measurements

Power Supply

- DC
- COM = common reference node of circuit
- $-\frac{1}{2}$ = chassis/earth ground

E80 Lecture 4.8: Basic Electrical Measurements

Multimeter-Voltage

- Connect in parallel with C.U.T
- Internal resistance of VM should be large, $10M\Omega$ for Elenco
- DC vs. AC (RMS for sinusoid)
- Range

Multimeter-Current

Measuring I:

- Connect in series with the C.U.T.
- Internal resistance of AM must be very small, can be ignored.
- DC vs. AC (RMS for sinusoid)
- Range

E80 Lecture 4.10: Basic Electrical Measurements

Multimeter -Resistance

- Connect across R (isolated from other circuits)
- ΩM has internal battery, so should not connect to active circuits such as power supply

Multimeter – Digital vs. Analog

- Analog meter (less precision in VM due to lower input resistance)
- Digits vs. needle position
- Higher performance: precision, true RMS reading

E80 Lecture 4.12: Basic Electrical Measurements

Oscilloscope: Voltage Measurement (Time domain)

Oscilloscope Probe

E80 Lecture 4.14: Basic Electrical Measurements

Oscilloscope Probe

- o Oscilloscope: $1M\Omega$ input resistance, 20pF capacitance
- Coax cable capacitance typically ~ 100pF
- 10x probe: 9MΩ, 1/9*(120pF). Improved input impedance by a factor of 10 not only for low frequency but also for high frequency
- Oscilloscope bandwidth 60MHz
- Tuning of 10x probe (instruction see BEM guide)

E80 Lecture 4.15: Basic Electrical Measurements

Use long busses for power and ground:

Don't use them for signals

Color-code wires:

Red = V + powerBlack = V - powerGreen = ground White or Blue = signal

Keep components close to the board:

Trim resistors, capacitors, wires

Check individual component

before constructing the whole circuit

breadboarc

E80 Lecture 4.16: Basic Electrical Measurements

Pay Attention to Details and Practice

http://makezine.com/2010/03/22/improving-breadboard-layout-through/

E80 Lecture 4.17: Basic Electrical Measurements

Data Organization

How many data points to take? Useful data analysis tool? DAQ and LabVIEW (automation)?

E80 Lecture 4.18: Basic Electrical Measurements

Introduction to Opamp

- Characteristics
- Simple analysis procedure
- Construct unity-gain amplifier or buffer

E80 Lecture 4.19: Basic Electrical Measurements

Introduction to Opamp

- Active components→ provide power gain, requires power supply V⁺ and V⁻
- Dual polarity vs.
 single polarity power
 supply

$$\circ$$
 V_{out}=A(V₊-V₋)

Characteristics of Opamp

System response: $V_{out} = A(V_+ - V_-)$

- Typical A=10⁵→ $V_+ \cong V_-$ (since V_{out} is some finite value <power supply)
- Typical Rin=few M $\Omega \rightarrow$ current into opamp = $i_{-} = i_{+} \cong 0$

Unity Gain Amplifier

 $v_0 = ?$ What is the purpose of this buffer?

E80 Lecture 4.22: Basic Electrical Measurements

Non-inverting amplifier

E80 Lecture 4.23: Basic Electrical Measurements